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1/f noise in a two-lane highway traffic model
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A cellular automaton model of traffic current on a two-lane highway is proposed. Clustering and hop-
ping mechanisms are introduced into the interactions between individual cars by the traffic rules. The
power spectrum of the traffic current may show good 1/f behavior in certain parameter regions. The
1/f noise is the result of many-body interactions of clustering and hopping. It is found that a state with
1/f noise has a remarkable advantage allowing effective transporting.

PACS number(s): 05.40.+j, 02.90.+p, 68.70.+w

1/f noise is one of the great mysteries of physics in re-
cent years. It is observed not only in electrical measure-
ments of condensed matter systems [1,2], but also in
diverse systems such as freeway traffic [3], water flow in a
river [4], music [5], etc. In these cases the power spectra
of signals may show power-law decay with an exponent
close to —1 over many frequency decades. The
widespread occurrence of the 1/f behavior suggests that
an underlying general explanation might exist. To this
end, Bak, Tang, and Wiesenfeld introduced the concept
of self-organized criticality (SOC) and used the cellular
automaton (CA) to study discrete dynamics [6]. Howev-
er, a later numerical analysis by Jensen, Christensen, and
Fogdby [7] showed that the actual power spectrum of the
model was in fact 1/f2, and this was supported by exper-
iments [8,9]. Following the SOC idea, Jensen and co-
workers [10,11] and Christensen, Olami, and Bak [12]
proposed models with 1/f behavior. Nevertheless, to
date, few models showing 1/f behavior have been
offered.

Traditionally, traffic problems are simulated by various
hydrodynamic models [13,14]. By using CA models,
traffic problems are simulated in both a one dimension
highway [15] and a two dimensional system (the whole
city traffic) [16]. Lately, Ben-Naim, Krapiusky, and
Redner studied the clustering behavior in a one-lane
highway by a “ballistic model” [17]. In Ref. [16(c)],
Nagatani numerically studied the Biham traffic model
[16(a)], and found a 1/f noise of waiting time near the
traffic-jam threshold. The Biham model intends to simu-
late an entire city traffic problem in which every road is
strongly influenced by other roads, traffic lights, etc.
This is not the system examined in Ref. [3]. To our
knowledge a good reasonable model which directly simu-
lates the mystical 1/f behavior in freeway traffic flow has
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never been offered up to now.

In this paper, we will study a discrete-
time-continuous-space CA model simulating the two-
lane highway traffic flow. The model is designed under
the following two assumptions: (1) Every car wants to go
as fast as it can. (2) Every car should abide by the traffic
rules. It is the traffic rules that determine the interaction
of individual cars. If there are only a few cars on road,
then these cars may run freely, and will not interact with
one another, so that every car can go as fast as it can.
However, if there are too many cars on the road, and
every car has a different velocity, then these cars will in-
teract with one another surely, since every highway has
only a few lanes.

We assume the highway has two lanes, one is slow, the
other fast.

(1) On the left edge of the highway, cars can enter into
the two lanes with a total probability of p (probability p
means p cars enter onto the highway in every unit time).
Every car has its fixed velocity v which is uniformly and
randomly distributed in the range from vy,—Av/2 to
vo+Av/2. The length of the way is defined as vy XI.
Here v, [, and Av are control parameters. In the follow-
ing, we fix v,=35 unchanged.

(2) If a fast car (car 2) is going to collide with a slow
car (car 1) (or a cluster of cars), then car 2 slows down to
the velocity of car 1 (or the leading velocity of the cluster
of cars), and keeps the distance ds from car 1 (or from the
front car). Then car 1 and car 2 form a new cluster (or
bigger cluster) of cars.

(3) In order to go fast, a car can hop between the two
lanes. The rules of hopping are defined as follows. On
the slow lane, when a fast car (car 2) is blocked by a slow
car (car 1), then, in order to go fast again, car 2 can hop
to the fast lane at the same place. There is one condition
on which the “hopping step” is forbidden: if there is
another car (car 3) in the fast lane which is behind car 2
initially, and is going to collide with car 2 if car 2 hops to
the fast lane. When the “hopping step” is forbidden, car
2 can go ahead in the slow lane behind car 1 waiting for
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the chance to hop. The same holds in the fast lane; if a
car is going to collide with another car, we let the fast car
slow down, and because they are in the fast lane it is
more reasonable to let the slow car hop to the slow lane.
The hopping rule is the same as that given in the slow
lane.

(4) All cars which do not hop to another lane proceed
at their fixed velocities until a collision occurs.

The process of the simulation is (1)-(2)-(3)-(4)-(1), up-
dating to all cars on the road. We define these rules ac-
cording to the true traffic ones. These rules result in the
following two conflict evolutions: (a) Because of the
difference in the fixed velocities of different cars, rule (2)
will generate clusters due to collisions. Every cluster will
begin with a leading slow car, and the cluster will become
larger with the increase of time when the road is infinitely
long. (b) According to rule (3), the clusters will be re-
duced or destroyed: either a larger cluster becomes many
smaller clusters (when some cars belonging to the cluster
hop to the other lane), or the leading velocity changes
(when the leading car hops to the other lane).

To our knowledge, this paper is the first to suggest
such a two-lane traffic model to simulate realistic freeway
transport. In this traffic model, there are two kinds of in-
teractions: clustering caused by collisions, which slows
down the traffic current; and hopping due to the two-lane
structure, which speeds up the current. The competition
of these two sides makes the model dynamics interesting.
The hopping mechanism is the essential difference of the
present model from all one-lane models previously inves-
tigated, and it will be found that this two-lane mechanism
is the key point to produce 1/f noise.

The parameters given above are reasonable in simulat-
ing the real highway flow. As in Ref. [15(a)], the distance
of adjacent cars on the most condensed way is 7.5 m, this
is the value of ds here. Thus the average velocity v,=5
means that the real velocity is vo=(7.5/ds) X 5=37.5/ds
(m/unit time), which is close to the real free velocity of
cars on the freeway (about 33 m/s). Thus in our model
ds =1 means that one unit time corresponds to 1 s in the
real system.

Now we specify the physical quantities measured in
our CA model. On the right edge of the road, we record
the sum of cars n(t) going out of the way on the two
lanes in every unit time ¢. At the same time, the distribu-
tion function p(n) of the signal strength n(¢) is also
recorded. We begin to record n(t) when thousands of
cars have gone out of the way, supposing that the system
has reached an asymptotic state and the dynamics of the
system will not then be influenced by the initial condi-
tion. In Fig. 1 we show a typical measurement of n(z).
In Fig. 1(b) we show a magnification of a section of Fig.
1(a) in order to exhibit the self-similar structure of the
n(t) signal.

The power spectrum is obtained by a direct Fourier
transformation of n(z). In order to reduce fluctuation we
averaged many power spectra of successive time se-
quences. Figure 2(a) presents the power spectra for
Av=4, ds=1, p=1.9, and /=1000, 2000, and 4000, re-
spectively. It is remarkable that in all cases the spectra
clearly show 1/f behavior in the scaling segments. We
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can also see that there are some deviations in both low
frequency and high frequency sides. The high frequency
deviation is caused by the nonzero time step and other
reasons (for example, alias). The low frequency side has a
small white-noise segment, which is well known to be
caused by the finite length of the road. Increasing the
road length definitely reduce the white-noise spectrum
segment, as can be seen in Fig. 2(a) (from I to II to III,
the power-law scaling is improved successively by in-
creasing /).

In order to compare with the experimental measure-
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FIG. 1. (a) A time sequence of the number of cars going out
of the highway in unit time. The parameters are /=2000,
Av=4,p=1.4,and ds=1. (b) A section of (a).
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ment result in Ref. [3], we have also recorded the flux
function

f)=3 d8(t—t;) (1)

in which ¢; indicates the time the ith car goes out of the
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FIG. 2. (a) The power spectra of the systems. We fix Av=4,
p=1.9, and ds=1, and take different lengths as /=1000 (I),
2000 (II), and 4000 (III). The low frequency cutoff scales with
the system size. 1/f behavior is identified in the scaling parts.
For larger / we have a smaller cutoff on the low frequency side.
The exponent of the power spectrum in the scaling segment
changes weakly with the system size I. (b) The power spectra of
the time series Eq. (1). All the parameters are the same as in (a).
In both (a) and (b) the data have been multiplied by factors 1, 2,
and 4, respectively from bottom to top in order to keep the
curves apart. (The straight line is 1/f. The fluctuations of the
curves are caused by the limit of our CPU time.)
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right edge of the road. The power spectrum is defined as
[3,16(c)]

2

— 1 L T iwt
s(w) 7}1m T‘j‘“Tf(t)e dt’ (2)

In Fig. 2(b) we plot the spectrum of f(¢) by taking the
same parameters as in Fig. 2(a). It is clear that the flux
function f(z) also has 1/f behavior. The essential
features are completely the same as those in Fig. 2(a).
Moreover, the 1/f noise revealed in the experiment of
Ref. [3] is realized in our model.

We have also analyzed the influence of parameter Av
on the power spectrum. The general tendency is the
same as that in Fig. 2. When the distribution range of ve-
locity Av is wider, the 1/f power spectrum covers larger
frequency range. ds also influences the frequency range
of the power-law behavior. The result is also like Fig. 2.
With larger ds, the 1/f power spectrum may extend to
the lower frequency range. However, it is found that all
three parameters /, ds, and Av do not considerably
influence the exponent of the power spectrum in the scal-
ing segment. So the 1/f behavior of our model is robust
for their changes.

The above observation can be understood heuristically,
based on the interaction rules. In our model, cars enter
onto the way randomly; this is a white noise. If the road
is short, the collision frequency is small; then the dissipa-
tion caused by the interactions of individual cars lasts
only for a short time, and the clusters are also small. The
time correlation leading to the 1/f noise can be identified
only for a short time scale, which shifts the 1/f segment
to a higher frequency and leaves the low frequency
behaving like the white-noise spectrum. When the high-
way is long, the two conflicting facts, clustering and hop-
ping, will lead the system to a definite state where the in-
teractions of cars play a key role in causing dissipation,
producing large clusters and frequent hopping, and intro-
ducing a long time correlation of signals. This is charac-
terized by a better 1/f behavior at low frequency.

For the same reason, it is easy to understand why the
low frequency cutoff can be influenced by Av and ds: If
Av is broader, there are more collisions and more hop-
ping occurring leading to a longer correlation of indivi-
dual cars. Then we have a better 1/f spectrum. When
the interaction distance ds is long, the system will have a
long spacious correlation, which appears as a long time
correlation of the signals. Therefore, the low frequency
cutoff of the power-law behavior will also be reduced by
increasing ds.

The influence of the probability p of cars entering onto
the road is presented in Table I where we take the param-
eters 1 =2000, ds =1, and Av=4. Figure 3(a) shows some
power spectra of these systems. We can see that the ex-
ponent depends sensitively on p (contrary to the depen-
dencies on /, Av, and ds). For p=0.3 we find the ex-
ponent is —0.1, and when p=1.9 we obtain the exponent
—1. Figure 4 shows the dependence of the exponent on
p- It is noted that 1/f behavior occurs only when the
density of cars on the road is sufficiently high to allow
strong dissipation and interaction [18]. In fact, in Ref.
[3] the authors observed that the average number n(z)
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TABLE 1. Measured exponent [ of power spectrum
S(f)<f~# of n(t) for different p with /=2000, ds=1, and
Av=4,

Models Exponents Models Exponents
p=0.1 B=0.00 p=0.8 B=0.73

p=0.2 B=0.06 p=0.9 B=0.82
p=0.3 B=0.10 p=1.0 B=0.86
p=0.35 B=0.14 p=12 B=0.86
p=0.4 B=0.46 p=13 B=0.97
p=0.5 B=0.55 p=14 B=1.00
p=0.6 B=0.56 p=19 B=1.06
p=0.7 B=0.70
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FIG. 3. 1=2000, Av=4, and ds=1, and p=0.3(), 0.7(1I),

0.9(III'), and 1.9(I¥). (a) The power spectra of n(z). (b) The

distribution function p(n) vs n.
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FIG. 4. The dependence of the exponent 8 [S(f) < f ~5,S(f)
is the power spectrum of n(¢)] on the probability p.

was almost 1/s. This is in accordance with the p range
corresponding to 1/f noise in our case.

It should be emphasized that 1/f behavior can occur
only for intermediate p. Values of p both too small and
too large may destroy 1/f property. In the small p limit,
the clustering effect of cars will become very weak, so the
free running of cars play a key role, which yields the
white-noise spectrum. In the large p limit, hopping be-
tween the two lanes is almost forbidden, and the cluster-
ing effect of cars will become very strong and the model
will go back to the high density one-lane model, where no
1/f can be observed. However, when there is an inter-
mediate density of cars on the road (as we studied,
p=1.9), the hopping and clustering mechanisms both be-
come important, and they lead to the good 1/f behavior.
(In our model the maximum p can only be up to p=2.)

In order to investigate how the motion of individual
cars is influenced by others, we investigate the distribu-
tion function p(n) of the signal n(¢). In Fig. 3(b) we
show p(n) vs n with the same parameters as given in Fig.
3(a). Comparing system p=0.3, for which the power ex-
ponent value is —0.1, with system p=1.9 in which the
exponent reaches approximately —1, we can conclude
that cars have the trend to bunch themselves in a good
1/f system. This result has also been obtained in Ref.
[3]. In Fig. 3(b) stronger signals of n(z) mean more cars
output from the road in unit time. The implication of
Fig. 3(b) is the following: When there are many cars on a
long road, after inner interactions, the system tries to or-
ganize itself to a definite state favorable to effective trans-
porting. The 1/f noise behavior is a typical feature of
this definite state. However, this assumption is based on
only a few observations, and should be confirmed by
many more experiments. The intuitive concept is in-
teresting, which is useful not only in this model, but also
in other transporting phenomena, such as the flux flow in



4668

type-II superconductors, electrical measurement, water
flow in a river, and so on.

In conclusion, we have presented a more reasonable
discrete-time and continuous-space model of cars running
on a freeway which abide by the traffic rules. The model
offers a good 1/f behavior, which is in accordance with
the real experiment result. From this model we can see
that the 1/f noise phenomenon of the traffic current is
just the result of the competition of both interactions of
clustering and hopping between the cars which are
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defined by the traffic rules. The simple model sheds light
on the understanding of the widespread 1/f noise phe-
nomena. The intuitive idea drawn from the simple model
is also useful to understand why in many systems 1/f
noise behavior can be found only at some critical points
or in certain control parameter regions [2,19].
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